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Bacterial leaf blight (BLB) of rice is one of the most destructive diseases affecting rice fields. 
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of BLB. Two BLB resistance genes, Xa21 and 
Xa7, were transferred into the susceptible indica cultivar Bacthom7 (BT7) by using marker-assisted 
selection with markers pTA248 for Xa21 and ID7 for Xa7. Improved BT7 lines carrying the two resistance 
genes were inoculated with three isolates of the Xoo from Northern Vietnam and evaluated for 
agronomic traits. Artificial inoculation of 13 lines with three Xoo races identified nine highly resistant 
lines with wide-spectrum resistance to Xoo, including D1, D2, D3, D6, D7, D8, D9, D10 and D12. These 
lines were similar to recurrent parent BT7 with regard to external appearance, yield performance and 
grain quality. On the basis of agronomic traits and the level of resistance to BLB, two promising lines, 
D6 and D9 were further selected. These two lines could efficiently contribute to rice production for food 
security and food safety in northern Vietnam. 
 
Key words: Xanthomonas oryzae pv. oryzae, resistance genes, near-isogenic lines, marker-assisted selection 
(MAS), improved rice lines.  

 
 
INTRODUCTION 
 
Bacterial leaf blight (BLB) caused by Xanthomonas 
oryzae pv. oryzae (Xoo) is one of the most devastating 

diseases in rice fields in Asia. The disease has recently 
become more serious in northern Vietnam because it
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now appears during two crop seasons, especially among 
hybrid rice varieties. BLB caused yield decreases of up to 
60% (Mew et al., 1982). Thousands of hectares of 
cultivated land are affected by BLB annually in India, with 
yield losses amounting up to 60% (Sirivastava, 1972). 
BLB spreads widely during the summer season in coastal 
areas of northern Vietnam (Plant Protection Department, 
MARD). Areas affected by BLB increased by 30 to 70% 
in 2012. Although BLB can occur at any stage and in any 
organ of rice plants, infection particularly reduces yield at 
the booting, heading and milk stages. However, practical 
chemical methods that can be applied to control BLB 
remain to be established. Therefore, deployment of 
resistant varieties and integrated pest management are 
important solutions to controlling BLB. Thus far, a total of 
38 BLB-resistant genes have been identified in rice (Khan 
et al., 2014). Among them, four BLB-resistant genes were 
mapped on rice chromosome 4 (Xa1, Xa2, Xa14 and 
Xa25), one on chromosome 5 (xa5), one on chromosome 
6 (Xa7), one on chromosome 8 (xa13) and six on 
chromosome 11 (Xa3, Xa4, Xa10, Xa21, Xa22 and 
Xa23). The locations of the remaining BLB-resistant 
genes are still ambiguous. 

Near-isogenic lines (NILs) and pyramided lines (PYLs) 
that are almost identical to parental lines, except target 
genes, are very useful genetic resources for genetic 
improvements to rice. The NILs can be used to introduce 
a target gene into improved rice cultivars without inducing 
any adverse effects such as sterility or unfavorable 
linkage drags such as tall plant height (Yara et al., 2010). 
However, the pathogen can evolve to overcome a 
resistant cultivar that carries a single resistance gene 
after large-scale and long-term cultivation. Xa4 showed 
resistance to BLB in the Philippines in the 1970s, but this 
was later overcome (Mew et al., 1992). Recently, Xa21 
caused a reduction in the resistance level of Xoo races in 
the Philippines, India, Korea and China (Lee et al., 1999; 
Marella et al., 2001; Xu et al., 2012). In contrast, PYLs 
that carry more than two BLB resistance genes showed 
more durability and a higher level of resistance to BLB 
than lines carrying a single resistance gene (Pradhan et 
al., 2015). PYLs can delay the emergence of virulent Xoo 
races against BLB resistance genes. However, 
pyramided resistance genes, which show similar 
reactions to BLB, are difficult to develop through conven-
tional breeding methods. Marker-assisted selection 
(MAS) has unique advantages to overcome this limitation 
because MAS relies on DNA polymorphism rather than 
phenotypic selection (Collard and Mackill, 2008). 

Bacthom7 (BT7) is a high-quality cultivar and is widely 
cultivated in northern Vietnam but is also susceptible to 
Xoo. Among the reported resistance genes, Xa7 and 
Xa21 showed wide-spectrum resistance in Asia (Vera 
Cruz et al., 2000; Webb et al., 2010). Thus, one of the 
promising strategies to effectively improve the resistance 
level of BT7 is pyramiding these two resistance genes. 
Previously,  a  BT7-carrying  BLB  resistance  gene  Xa21 

 
 
 
 
(BT7-Xa21) was developed and released as a new 
variety, BT7KBL.  

Therefore, the objective of the present study was to 
improve BLB resistance by pyramiding two resistance 
genes, Xa7 and Xa21 into indica cultivar Bacthom7 
(BT7). In this study, MAS was applied to improve 
accuracy as well as efficiency of gene pyramiding. 
 
 

MATERIALS AND METHODS 
 
BT7-Xa21, which carries BLB resistance gene Xa21 in a genetic 
background of BT7, was used as recurrent parent. One IR24 NIL, 
IRBB7 was used as donor parent for Xa7 and IR24 was used as a 
susceptible control in BLB resistance evaluation. The materials 
were planted at Vietnam National University of Agriculture, Hanoi, 
Vietnam. To produce F1 plants, BT7-Xa21 was crossed with IRBB7 
(Figure 1). The F1 plants were backcrossed with BT7-Xa21. In the 
BC1F1 generation, MAS was used to select plants with resistance 
alleles of Xa21 and Xa7. A similar strategy was applied until the 
BC4F2 generation. The BC4F2 plants were then self-pollinated to 
produce a BC4F3 generation. Finally, 13 BC4F3 lines carrying the 
two BLB resistance genes Xa21 and Xa7 were inoculated with 3 
Xoo races and evaluated for agronomic traits.  
 
 

Isolation of Xoo strains and evaluation of BLB resistance level 
 

BLB-infected rice leaf samples were collected in farmers‟ fields in 
Tuyen Quang, Nam Dinh, and Thanh Hoa provinces from 2012 to 
2014 (Table 1). The isolation, culture and artificial infection was 
done following Furuya et al. (2012). The infected leaf was cut into 
1-cm-long specimens and sterilized with 70% ethanol followed by 
1% H2O2 solution. Each sample was soaked in 1 ml of distilled 
water and the solution was streaked on Wakimoto medium. To 
develop bacterial colonies, the culture was kept on a bench at room 
temperature for 4 days.  

Yellow bacterial colonies were picked and transferred to a new 
clean Wakimoto medium and further cultured for 2 days. The 
cultured Xoo colonies were diluted to about 109 cfu/ml for artificial 
inoculation. Plant inoculation was carried out by clipping the tip of 
leaf (about 2 to 3 cm) with scissors that were dipped into the 
bacterial solution. The lesion lengths (cm) on the inoculated leaves 
were measured at 18 days after inoculation. The level of resistance 
was categorized as follows: lesion length <4.0 cm was highly 
resistant (HR), 4.0 to 8.0 cm was resistant (R), 8.0 to 12.0 cm was 
moderately resistant (MR), and >12.0 cm was susceptible (S). 
 
 

DNA isolation and marker-assisted selection 
 

Marker-assisted backcross was conducted to select plants that 
carried Xa7 and Xa21. At the BC1F1 generation, plants homozygous 
for Xa21 and heterozygous for Xa7 were selected. ID7 marker 
(forward 5′-ATA TTC ACC AAA TCA TTC CCT C-3′, reverse 5′-ATA 
CAA CCC TAA ACC CAT CTC A-3′) was applied to select plants 
that carried Xa7 (Zhang et al., 2009). pTA248 markers (forward 5′-
AGA CGC GGA AGG GTG GTT CCC GGA-3′, reverse 5′-AGA CGC 
GGT AAT CGA AAG ATG AAA-3′) linked to Xa21 were used to 
select the plants that carried Xa21 (Williams et al., 1992).  

Leaves (1.0 to 2.0 cm long) were harvested at mature or young 
stages and stored in a deep freezer for long-term storage or a 
refrigerator for short-term storage until use. Two DNA extraction 
methods were used: the CTAB method (Varghese et al., 1997) or 
the TPS method (Monna et al., 2002). The extracted DNA was 
dissolved into half strength of TE and diluted to 50% with H2O just 
before PCR preparation. PCR was conducted in Gene Atlas (Astes, 
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Figure 1. Breeding scheme for marker-assisted backcrossing of Xa7 in a genetic 
background of BT7-Xa21. The numbers of plants selected for backcrossing or self-
pollination and the total plant numbers are indicated in parentheses. MAS, marker-
assisted selection, WS, winter-spring season, DS, summer season. 

 
 
 

Table 1. Xoo races used in this study. 
 

Race No. Isolate name 
Collected on rice 
varieties 

Collection location 
Date of 

collection 

Race 3 HUA 012035-3 BC15 Kim Phu, Yen Son, Tuyen Quang 18/09/2012 

Race 5 HUA 014042-3 Thai Xuyen Quang Chau, Quang Xuong, Thanh Hoa 10/10/2014 

Race 14 HUA 013031-1 Bac Thom 7 Minh Tan,Vu Ban, Nam Đinh 13/09/2013 

 
 
 
Fukuora, Japan). The PCR reaction mixture (10 μl) contained 5 μl 
of Dream Taq Green PCR Master mix (Thermo Scientific, Waltham, 
MA, USA), 0.15 μl of primers (0.3 μM each), 2 μl DNA solution and 
2.7 μl H2O. The thermal cycler was programmed as follows: initial 
denaturation for 2 min at 95°C (pTA248) or 5 min at 95°C (ID7); 
followed by 35 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 
1 min; and a final extension at 72°C for 5 min. The PCR products 
were separated in 1% agarose gels (pTA248) or 2% (ID7) by 
electrophoresis at 100 V for 45 min in TAE buffer. Gels were 
stained in ethidium bromide solution and then photographed under 
ultraviolet light. 
 
 
Evaluation of agronomic traits 
 
Rice lines were evaluated in the field at Vietnam National University 
of Agriculture, Hanoi, Vietnam during the spring season (January to 
June) in 2016. Plants were numbered and grown in numerical order 

in nursery beds that were 5 m in length with row spacing of 20 cm 
and plants were spaced 20 cm apart. Seven agronomic traits were 
evaluated in the BC4F3 individuals that were homozygous for Xa7 
and Xa21. The traits investigated comprised days to heading (DH), 
plant height (PH), panicle length (PL), number of spikelets per 
panicle (NSP), number of grains (NG), number of panicles per plant 
(NPP) and 1000-grain weight (TGW) (Huang et al., 2012; Yara et 
al., 2010). Aromatic testing was performed according to the method 
described by Kibria et al. (2008). Briefly, 40 brown rice seeds were 
placed in a test tube and 5 ml of 1.7% (v/v) KOH was added. The 
tube was sealed and kept at room temperature for 15 min. 
Evaluation of aroma was performed by panelists and scored from 
grades of 1 to 9.  
 
 
Data analysis 
 
Analysis of variance (ANOVA) was performed to test the differences
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Figure 2. PCR analysis of the parental lines and BC1F1 plants. DNA was amplified with pTA248 that was linked to Xa21. 
IR24 (xa21/xa21) and IRBB21 (Xa21/Xa21) were used as controls for PCR amplification.  

 
 
 

 
 
Figure 3. PCR analysis of the parental lines and BC1F1 plants. DNA was amplified with ID7 that was linked to Xa7. 
BT7-Xa21 (xa7/xa7) and IRBB7 (Xa7/Xa7) were used as controls for PCR amplification.  

 
 
 
in the response to BLB and agronomic traits among the lines and 
parents. The values of each line were averaged for 10 individuals in 
each line.  
 
 

RESULTS 
 
Marker-assisted selection of Xa21 and Xa7  
 
At the BC1F1 generation, a pTA248 marker was used to 
select plants that were homozygous for Xa21 (Figure 2). 
In total, 21 out of 96 plants were homozygous for Xa21. 
These plants were used for marker-assisted selection of 
Xa7 by using an ID7 marker (Figure 3). Among the 21 
plants, 13 were heterozygous at Xa7 

An evaluation of agronomic traits were performed for 
263 BC2F1 plants and 46 plants that were similar to 
recurrent parents were selected for genotyping. Among 
the 46 plants, 21 were heterozygous at Xa7. These 
plants were backcrossed to recurrent parents to generate 

a BC3F1 generation. Similarly, among 187 BC3F1 plants, 
46 were selected for genotyping. Finally, 13 plants that 
were heterozygous for Xa7 were backcrossed to 
recurrent parents to generate a BC4F1 generation.  The 
seeds of the BC4F1 generation were planted to generate 
302 BC4F2 lines. Among them, 45 were first selected 
based on the agronomic traits and were then checked for 
Xa7 (Figure 4). Finally, 14 lines were sown separately 
into 14 BC4F3 lines.  
 
 

Artificial inoculation of BC4F3 lines carrying Xa21 and 
Xa7  
 

Three Xoo races, which were virulent to IR24 were used 
for inoculation. Nine lines showed high levels of 
resistance to race 3 (Table 2). Twelve lines were 
resistant to races 5 and 14, and two lines were 
moderately resistant to race14. Recurrent parent BT7-
Xa21 was resistant to race 3, moderately resistant to race  
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Figure 4. PCR analysis of the parental lines and BC4F2 plants. DNA was amplified with ID7 that was linked to Xa7. 
BT7-Xa21 (xa7/xa7) and IRBB7 (Xa7/Xa7) were used as controls for PCR amplification.  

 
 
 

Table 2. Evaluation of BLB resistance of improved lines (BC4F3) in winter-spring season in 2015–2016 in Soc 
Trang province. 
 

Line name  
Race 3 

 
Race 5 

 
Race 14 

LL (cm) Responds 
 

LL (cm) Responds 
 

LL (cm) Responds 

D1 2.6 HR 
 

6.3 R 
 

6.7 R 

D2 3.1 HR 
 

5.7 R 
 

5.2 R 

D3 2.3 HR 
 

5.1 R 
 

6.6 R 

D4 2.6 R 
 

6.2 R 
 

10.2 R 

D5 5.0 R 
 

5.3 R 
 

8.9 R 

D6 1.9 HR 
 

4.6 R 
 

6.4 R 

D7 1.7 HR 
 

5.4 R 
 

5.7 R 

D8 2.4 HR 
 

6.0 R 
 

6.8 R 

D9 2.2 HR 
 

6.8 R 
 

5.7 R 

D10 3.5 HR 
 

6.2 R 
 

6.2 R 

D11 4.8 R 
 

6.9 R 
 

9.7 R 

D12 3.2 HR 
 

7.6 R 
 

8.6 R 

D13 4.6 R 
 

10.5 MR 
 

11.3 MR 

D14 5.1 R 
 

8.7 MR 
 

10.8 MR 

IR24 27.5 S 
 

30.8 S 
 

34.6 S 

BT7-Xa21 6.2 R 
 

10.2 MR 
 

14.6 S 
 

Where LL: lesion length. 
 
 
 

5, and susceptible to race 14. Pyramided lines of BT7 
carrying Xa21 and Xa7 have acquired novel resistance to 
race 14 as well as higher resistance to race 3 (e.g., D1, 
D2, D3, D6, D7, D8, D9, D10 and D12).  
 
 
Purification and agronomic traits of improved lines at 
BC4F3 generation 
 
Agronomic traits including plant height, tillers per hill, 
length and width of flag leaf, effective tillers per hill, 

growth duration, panicle length, number of fruiting seeds 
per panicle, seed set rate, 1000-grain weight, and yield 
were evaluated at the BC4F3 generation (Tables 3 and 4). 
All lines examined showed good uniformity with 
purification scores ranging from 5 to 9 even though 
uniformity of BT7-Xa21 was superior to the improved 
lines. Plant height was classified into a dwarf group, and 
the difference to recurrent parent ranged from 3.0 (D13) 
to 10.7 cm (D5). Tillering ability of the lines was similar to 
the recurrent parent BT7-Xa21, and the number of tillers 
per hill varied from 9.5 (D7) to 10.7 tillers (D10), while
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Table 3. Agronomical traits of improved lines (BC4F3) in winter-spring season in 2015-2016, Soc Trang province. 
 

Line 
Purification 

(Score) 
Plant height 

Tillers per 
hill 

Length of 
flag leaf (cm) 

Width of flag 
leaf  (cm) 

Effective 
tillers per hill 

Growth duration 

(days) 

D1 9 91.5±4.2 10.3 32.6 1.7 8.5 109±5 

D2 5 89.7±2.8 9.6 34.1 1.7 8.2 106±3 

D3 5 89.2±3.3 10.6 33.5 1.7 8.7 108±3 

D4 9 89.8±2.9 10.1 30.2 1.8 8.4 110±3 

D5 9 100.3±3.8 9.7 34.7 1.6 7.9 110±3 

D6 5 94.2±2.3 10.4 34.0 1.7 8.3 108±3 

D7 9 93.1±2.8 9.5 33.8 1.7 7.8 107±3 

D8 5 94.6±2.4 9.9 33.6 1.7 8.1 106±4 

D9 5 95.7±2.6 10.3 34.1 1.7 8.2 107±3 

D10 9 92.2±3.9 10.7 33.7 1.7 8.6 106±5 

D11 9 90.8±3.1 10.4 32.6 1.6 8.2 109±5 

D12 9 91.3±4.3 9.8 32.9 1.7 7.6 110±4 

D13 5 86.6±2.9 10.3 31.8 1.8 8.4 110±3 

D14 9 87.4±3.3 9.6 31.4 1.7 8.1 105±5 

BT7 1 89.6±1.3 10.3 33.8 1.7 8.4 107±2 
 

Purification (scores) 1: different plant type <0.25%; 5: different plant type 0.25 to 1%; 9: different plant type >1%. Mean±standard error.  
 
 
 

Table 4. Yield and yield components of improved lines in winter-spring season in 2015–2016, Soc Trang province. 
 

Line Panicle length (cm) No. of frutfull seeds per panicle Seed set rate (%) 1000 grain weight (g) Yield  (quintal/ha) 

D1 24.2 130.7 88.4 20.2 70.7 

D2 25.1 139.1 87.7 20.8 72.0 

D3 25.6 134.3 89.2 20.7 68.3 

D4 26.6 133.3 86.9 20.3 71.6 

D5 26.2 140.4 89.6 20.1 70.2 

D6 24.8 136.1 89.7 20.4 72.6 

D7 23.6 131.4 90.8 20.6 69.9 

D8 25.2 140.1 87.2 20.8 72.5 

D9 25.4 142.7 86.9 20.3 73.0 

D10 24.7 135.5 88.7 20.4 75.8 

D11 24.3 124.5 85.3 20.7 66.6 

D12 25.1 139.7 87.4 20.5 65.9 

D13 24.6 124.1 82.2 20.3 61.1 

D14 25.6 130.0 81.4 20.4 67.7 

BT7-Xa21 25.5 138.5 88.5 20.0 71.5 
 
 
 

that of recurrent parent was 10.3 tillers. Effective tillers 
per hill varied from 7.6 (D12) to 8.7 (D3). The growth 
duration of improved lines was similar to the recurrent 
parent, but uniformity was less than the recurrent parent. 
Based on these agronomic traits, D2, D3, D6, D8, D9 and 
D13 were selected as promising lines. 

Yield and yield components of improved lines were 
similar to those of recurrent parent BT7-Xa21. Moderate 
panicle size, high seed set ratios between 81.4 (D14) and 
90.8 (D7), small seeds, and number of spikelets per 
panicle ranging from 124.1 (D13) to 142.7 (D9) were 
observed. 1000-grain weight varied from 20.1 to 20.8 g. 

Yield of improved lines varied from 61.1 (quintal/ha) 
(D13) to 75.8 (quintal/ha) (D10) even though the control 
was 71.5 (quintal/ha). Finally, D2, D6, D8 and D9 were 
selected as promising lines for quality evaluation based 
on response to BLB, phenotypic uniformity, agronomic 
traits and yield. The D3 and D13 lines were excluded due 
to some inferior quality traits (data not shown). 
 
 

Quality evaluation of improved lines at BC4F3 
generation  
 

BT7-Xa21 is a high-quality rice variety with slender,



Thu et al.          1395 
 
 
 

Table 5. Quality traits of the promising lines of BC4F3 generation. 
  

Trait D2 D6 D8 D9 BT7-Xa21 

Straw color Brown-yellow Brown-yellow Brown-yellow Brown-yellow Brown-yellow 

Seed length (mm) 6.3 6.2 6.3 6.3 6.2 

Length/width 2.8 2.7 2.8 2.8 2.7 

Aromatic  3 4 3 4 4 
 

1: Non aromatic, 2: weak aromatic, 3: moderate aromatic, 4: aromatic, 5: strong aromatic. 

 
 
 
small, soft, brownish and aromatic grains, and is almost 
identical to the original cultivar BT7 except for the 
possession of Xa21. Some indicators of high-quality 
varieties are presented in Table 5. The four selected lines 
had grain characteristics similar to recurrent parent BT7-
Xa21 including a brown yellow hull, seed length of 6.2 to 
6.3 mm, and length/width of 2.7 to 2.8 (Table 5). Two of 
the promising lines, D6 and D9, had the same level of 
aroma as produced by recurrent parent BT7-Xa21. Based 
on the level of BLB resistance and agronomic traits, two 
lines, D6 and D9, were eventually selected as promising 
lines to be released to farmers‟ fields. 

 
 
DISCUSSION 
 
In this study, plants carrying Xa7 in addition to Xa21 from 
BC1F1 to BC4F2 generations were successfully selected 
using the MAS technique. Plants carrying two resistance 
genes show wider resistance than plants carrying single 
resistance gene. Previously, pyramiding BLB resistance 
genes, Xa4 and xa5, or xa5 and Xa10, was shown to 
express higher levels of resistance to BLB than a single 
gene (Huang et al., 2012). Similarly, the combination of 
Xa21 and Xa7 showed a high level of resistance as well 
as wide spectrum resistance to BLB (Table 2). 
Furthermore, the improved lines showed high phenotypic 
uniformity, semi-dwarf, good tillering, high seed set rate 
and small seeds like the recurrent parent at the BC4F3 
generation. This proved that pyramiding two resistance 
genes Xa7 and Xa21 was useful for improving BLB 
resistance in cultivar BT7. Conventional breeding is 
laborious, time consuming and difficult to apply when it 
comes to pyramiding dominant genes with similar 
reactions to BLB (Collard and Mackill, 2008). he results of 
this study show that MAS is an effective method to 
overcome the limitations of phenotypic selection in BLB 
resistance breeding in rice. Through further improvement 
of several traits along with additional field trials, the 
promising D6 and D9 lines will be released as new high 
quality varieties with improved resistance to BLB. 
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Recent agriculture is characterized by intensive and cleaning productions, which need seeds with high 
quality in large quantities bonded by in vitro culture labs. Nevertheless, in vitro ex vitro transition and 
during acclimatization losses occur due to the death of plantlets unable to survive this abiotic stress. 
Reactive oxygen species production during jasmonic acid-induced changes of previous transition was 
demonstrated. The role of superoxide dismutase in regulation of oxidative metabolism signaling in 
response to environmental stress is analyzed. Pineapple plantlets treated with jasmonic acid showed 
higher protein biosynthesis, which can be associated with a better regulated metabolic predisposition 
to face this phase, when superoxide dismutase activity showed adequate control against this stress in 
relation to superior water-use efficiency and survival. 
   
Key words: Environmental stress, water-use efficiency, survival. 

 
 
INTRODUCTION 
 
The presence of reactive oxygen species (ROS) as 
superoxide radical (O

-2
) and hydrogen peroxide (H2O2) is 

associated in plants with the normal biochemistry 
processes as photosynthesis and respiration (Sejima et 
al., 2014; Huang et al., 2016). The accumulation and high 
reactivity has a cytotoxic effect by oxidative damage 
throughout lipid peroxidation and membrane destruction, 
protein inactivation and DNA mutation (Pospisil and 
Prasad, 2014). The reduction oxidation cascades  (redox) 

of photosynthetic and respiratory chains of electron 
transport do not only provide energy for the metabolism, 
moreover it generates signals about participation in plant 
regulation of all the biology aspects at gene expression 
and the translation including chemistry of the enzymes 
(Kim et al., 2009). Some antioxidative enzymes as 
superoxide dismutase (SOD) and peroxidase participate 
in the ROS metabolism in pathogen infection. In plants, 
ROS   are   considered   the   first   defense   line  against 
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oxidative stress (Mittler and Blumwald, 2017). The 
induction or suppression of ROS production in the leaves 
is related with the antioxidative enzymatic activity 
diminishing H2O2 (by direct decomposition or oxidation) 
and O

-2
 (by dismutation) levels (El-Khallal, 2007). 

The tissue culture changes some morphological 
characteristics of plantlets such as chemical composition 
of epicuticular  layer (Preece and Sutter, 1991), form and 
distribution of stomas, tails and leaves structure (Ziv, 
1990); also, physiological characteristics as activities of 
stomas, roots and leaves functionality. These changes 
raise the adaptation capacity of some plantlets to external 
conditions and originate not survival in acclimatization 
phase of significant number of micropropagated plants 
(Preece and Sutter, 1991) improved in pineapple using 
temporary immersion (Gonzalez-Olmedo et al., 2005). In 
this situation, plantlets do not control the excess of 
epidermical transpiration considered as principal mortality 
plants factor when they are transferred into the soil 
conditions (Durkovic and Misalova, 2009). ROS play a 
very important role in these adaptation processes as 
ubiquity response messenger in the stress (Apel and Hirt, 
2004).  

To supply some of these deficits, the use of plant 
growth regulators is a common practice (Preece and 
Sutter, 1991). Jasmonic acid (JA) that acts mainly as 
signal molecule as plant response against many abiotic 
and biotic stress (Schilmiller and Howe, 2005; Abdala 
and Cenzano, 2006), could attenuate these effects in 
pineapple plantlets during in vitro-ex vitro transition and 
SOD activity could be a biological indicator, whose 
demonstration is the objective of this work. 
 
 
MATERIALS AND METHODS 

 
The experiment was carried out with pineapple (Ananas comosus 
(L.) Merr.) micropropagated plantlets according to Daquinta and 
Benegas (1997) during acclimatization phase. Previous at in vitro-
ex vitro transition, during in vitro rooting phase, a group was 
growing on medium enriched with Biojas® (a JA formulation) at the 
dose of 1 mg.L-1 established because it was the one that achieved 
the best effects in a previously tested screening. Another group 
without Biojas® was used as control. 

The variables were determined at the beginning of 
acclimatization (0 day), 14, 28 and 42 days later than the in vitro-ex 
vitro transition. Ten representative plantlets per treatment were 
used to choose the leaves analyzed. 

Soluble proteins extraction, involving enzyme, was carried out 
using the same procedure. 0.25 g of macerated leaves in liquid 
nitrogen was aggregated at Tris-HCl buffer 01 M, pH 7.5, with 0.1 
mmol.L-1 EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 15 
mM mercap-toethanol (ME, 1:4) (p:v). Further, 10% polyvinyl 
polypyrrolidone (PVPP) with respect to fresh weight was added. 
Homogeneous suspension was centrifuged at 15000 g during 20 
min. The supernatant was used as enzymatic extract and to 
quantify soluble proteins according to Bradford (1976) expressed as 
mg Prot.g-1 fresh weight (FW) referred to Bovine Serum Albumin 
(BSA) standard curve. 

Reaction mixture to determine SOD (EC 1.15.1.1) activity 
comprised 20 µL of enzymatic extract, 1 mL potassium phosphate 
(KOH),   50   mmol.L-1   buffer,   pH 7.6,   0.1  mmol.L-1  EDTA,  0.01  

 
 
 
 
mmol.L-1 cytochrome C, 0.05 mmol.L-1 xanthin, 0.03 unities of 
xanthin oxidase (EC 1.2.3.22) (SIGMA). Mixture xanthin-xanthin 
oxidase was used as superoxide radicals source using just as 
cytochrome C method (550 nm) (extinction molar coefficient 340 = 
21.1 (mmol.L-1)-1cm-1) (Mc Cord and Fridovich, 1969) in 
spectrophotometer (Pharmacia, LKB). Reaction time was 3 min, 

enzymatic activity was expressed as mol of superoxide by min.g-1 

FW and specific activity was expressed as mol superoxide by 
min.mg-1 Prot.  

Leaf D from the same plantlets from two treatments was used for 
physiological evaluations realized at the beginning of 
acclimatization phase and after 14, 28 and 42 days. Photosynthesis 
(µmol CO2 m

-2.s.-1) and transpiration total (mmol H2O m-2.s-1) were 
measured using CIRAS-2 (Portable System of Photosynthesis, 
Europe, PP Systems, UK) equipment connected to universal 
cuvette PLC6 2.5 cm2. The water-use efficiency (WUE) was 
estimated at these variables as relationship between photosynthesis 
and transpiration total.   

Survival was estimated as percentage as relationship between 
the number of alive plantlets in each moment of evaluation and the 
total number per treatment at the beginning (0 day). 

The Statistical Package for Social Sciences (Version 11.5 for 
Windows, SPSS Inc.) was used to perform statistical significance 
range test for bi-factorials comparisons or Student’s t-test for 
comparison of two conditions, both at 5% were evaluated using 
two-way analysis of variance (ANOVA) followed by Tukey’s Multiple 
significance. Normal distribution and homogeneity of variances 
were evaluated with Kolmogorov-Smirnov and Levene tests, 
respectively. Some data were mathematically transformed for 
statistical analyses. Discrete quantitative variables were 
transformed according to y´= SQR(y) or y´= SQR(0.5 + y). 
Percentage variables were transformed according to y´= 2 arcsin 
(SQR(y/100)).   
 
 
RESULTS AND DISCUSSION 
 

The in vitro-ex vitro transition of plants provokes an 
abiotic stress to them and one of the responses to this 
situation is related to ROS such as superoxide anion, 
hydrogen peroxide, etc. At high concentrations, ROS 
cause abnormalities and in extreme cases may result to 
cell death of plant tissues (Kim et al., 2009). SOD is the 
first in plant defense system to transform the superoxide 
anion into H2O (Kim et al., 2009). 

Figure 1 shows the results of SOD activity determined 
under effects of 1 mg.L

-1
 and without JA. The results of 

Figure 1 showed no differences between two groups on 
the SOD activity in all the evaluated moments. However, 
in control plantlets, the values of the activity of this 
enzyme were different at the initial as much as at final 
evaluation. Plantlets treated with JA increased the 
enzyme activity of SOD from the first 14 days.  

In this period, the same plantlets registered higher 
soluble protein content than control group (Figure 1 B). 
Only on the 28 day evaluation, this variable was higher in 
plantlets not treated with JA. At the end of acclimatization 
for both groups, this variable decreases to the lowest 
values of the experiment due to the reduction in the 
synthesis of these biomolecules, the translocation to 
other organs or degradation as a consequence of 
environmental conditions under which the plantlets were 
grown.  
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Figure 1. Effect of jasmonic acid on the SOD activity (A) (SE= ±0.02 U.g MF-1), SOD specific activity (C) 
(SE= ±0.02 U.mg Prot.-1) and soluble protein content (B) (SE=±0.36 mg Prot.g-1 MF), of Ananas comosus 
cv MD-2 plantlets in acclimatization conditions. Means with different letters indicate signification (ANOVA, 
Tukey test, p ≤  0.05). Each datum represents the mean for n=6. One unit (U) corresponds to 1 µmol of 
superoxide by minute. 

 
 
 
As a consequence of the behaviour previously analyzed 
in Figure 1A and B, the enzymatic SOD specific activity 
also varied (Figure 1C). Changes registered in this 
variable are in agreement with the concentration of 
soluble proteins quantified in the plantlets (Figure 1B) 
and they deserve a proteomic study of each moment of 
evaluation. During the transition moment, plantlets 
treated   with   JA   showed  higher  protein  biosynthesis, 

which can be associated with a better regulated 
metabolic predisposition to face this phase (Aragón et al., 
2010), which was expressed since the specific activity of 
SOD lightly increased at the end of evaluation against 
high increase observed in plantlets without JA in relation 
to the variable content of soluble protein and therefore 
with enzymatic specific activity, since the enzymatic 
activity was the same in both treatments (Figure 1A). 
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Table 1. Effects of Jasmonic acid (1 mg.L-1) on water use efficiency (mmol CO2 mol−1 H2O) of MD-2 
hybrid pineapple plantlets (Ananas comosus (n = 40)) in acclimatization conditions. 
 

Treatment 
Days after acclimatization 

0 14 28 42 

Without Biojas® 0.61
b
 3.35

a
 6.46

b
 17.29ª 

Biojas® 1.44
a
 3.62

a
 8.37

a
 14.05ª 

SE 0.15 0.12 0.44 0.86 
 

Means within columns followed by the same letters are not significantly different (Student’t Test, p 0.05). 
 
 
 
At the end of acclimatization, the moment where the 
reduction of metabolic activity and growth rate is 
observed frequently, among other reasons due to 
substrate exhaustion, environmental and nutritional 
factors that resulted to be restrictive. The specific activity 
of SOD increased for both groups. The increase was 
higher in the control plantlets because they had a higher 
enzymatic activity and low protein concentration. This 
demonstrated the anti-stress effects induced by the JA on 
pineapple plantlets of this experiment.  

Normally, plantlets are stressed during the in vitro-ex 
vitro transition due to changes on environmental 
conditions such as light and relative humidity (Kozai et 
al., 2000). As a result, plantlets suffer from abiotic stress 
that is frequently manifested through dehydration and 
photo-oxidation (Preece and Sutter, 1991) that provokes 
changes in the electron transfer chain and thus in redox 
systems. Light reactions are the most important source of 
ROS in illuminated mesophyllic cells. Jasmonates 
induced the degradation of chloroplast proteins, among 
them ribulosebiphosphate carboxylase/oxygenase 
subunits (Agrawal et al., 2002). JA through the same 
mechanisms might have reduced the generation of ROS 
such as superoxide anion (O

-2
) that has the capacity to 

cause oxidative damage to proteins, DNA and lipids.  
Low generation of ROS (presumably O

-2
) in plantlets 

treated with JA ensures their good growth. Higher ROS 
production can cause a retarded growth in plants as it 
was observed in transgenic potato plants with an 
elevated ROS production by the over expression of 
chloroplastic Cu/Zn SOD (Kim et al., 2009).   

Forty two days after acclimatization, both groups 
increased the specific activity of SOD with a marked 
difference among them where control plantlets had higher 
values. This final moment of acclimatization corresponds 
to stress factors that provoke metabolic changes as 
previously analyzed. It is known that early stimulation of 
antioxidant enzymes during the C3 to CAM change is 
accompanied by the increase in ROS generation. That is 
supported by molecular induced analysis during 30 to 40 
h treatment with salinity in M. crystallium leaves, showing 
that genes related to stress and antioxidant proteins are 
among the first to be induced (Kore-eda et al., 2004; 
Niewiadomska and Borland, 2008). 

As we all know, plant will trigger the production of ROS 
in response to stress. They  have  a  dual  effect  which is 

based on their overall cellular amount in plant. If kept in 
low level, they can function as signaling molecules to 
transmit information from metabolism to trigger 
appropriate cellular defense/acclimation response to 
environmental changes (Mittler, 2017).   

Using data not shown on transpiration and photo-
synthesis, the water-use efficiency was calculated as 
shown in Table 1. 

JA reduced the transpiration of treated plantlets only at 
the beginning of acclimatization with significant difference, 
which can be attributed to stomata conductance. It can 
be supposed that JA induced stomata closure, as 
previously has been informed by other authors (Creelman 
and Mullet, 1997; Evans, 2003). Exogenous MeJA does 
not appear to antagonize ABA-induced stomatal closure, 
although the ability of MeJA to regulate stomatal 
apertures remains controversial (Montillet et al., 2013). 
Recently, it has been proposed that 12-OPDA (a JA 
precursor), rather than MeJA, acts in promotion of 
stomatal closure (Savchenko et al., 2014 but Han et al. 
(2018) demonstrated the negative regulation of stomatal 
development. 

In this study, the last evaluations of the transpiration 
recorded similar values in both treatments, which 
decreased in each evaluation with respect to previous 
study. At the same time, photosynthesis did not change 
between the treatments but increased during the 
experiment, but without significant differences in the last 
three evaluations. All these joined by the low transpiration 
rate in plantlets treated with JA to perform their 
photosynthesis with the higher water-use efficiency 
(Table 1) especially at the beginning of acclimatization 
which is the most critical moment of the acclimatization 
process. WUE was also significantly higher in plantlets 
treated with Biojas® after 28 days of acclimatization.  

JA increased WUE by reducing the transpiration rate 
without a marked difference on photosynthesis in respect 
to control plantlets. The low WUE of these plantlets at the 
beginning of acclimatization is as a result of the 
incapacity of the plantlets to control excessive water loss 
through transpiration. In general, the WUE increased 
during acclimatization in both groups because the plants 
improved their control on transpiration rate. WUE is the 
resultant compromise between the maximum o 
photosynthesis and the minimum transpiration to improve 
the plant quality  (Cernusak et al., 2007), as shown in this  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/#B94
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/#B119
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/#B119
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/#B119
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Table 2. Effects of Jasmonic acid (1 mg.L-1) on survival (%) of  MD-2 hybrid pineapple plantlets 
(Ananas comosus  (n = 90)) in acclimatization conditions. 
 

Treatment 
Days after acclimatization 

0 14 28 42 

Without Biojas® 100
a
 98

ab
 94

b
 94

b
 

Biojas® 100
a
 98

ab
 96

ab
 96

ab
 

 

Means followed by the same letters are not significantly different (ANOVA, Tukey Test, p 0.05). Data were 
transformed according to y´= 2 arcsin (SQR(y/100)). 

 
 
 

experiment where plantlets treated with Biojas® 
comprised intrinsically of the capacity to suffer tolerance 
to the abiotic stress caused by acclimatization conditions 
and increased the survival as shown in Table 2. 

The higher levels of survival were in line with the 
efficiency of the methodology used according to Yanes et 
al. (2000). Nevertheless, plantlets treated with JA 
reduced the losses by the death of plantlets during 42 
days, due to 94% of survival in control which was 
statistically different while 96% in JA treatment was 
similar. Another datum that resume the productive value 
of application BioJas® to save 2% of plantlets during in 
vitro-ex vitro transition in relation to the expression of 
SOD activity to suffer tolerance to the effects of this 
abiotic stress, added to the knowledge on the physiology 
of ex vitro pineapple (A. comosus var. MD-2) as CAM or 
C3 regulated by the environmental conditions (Aragón et 
al., 2012). JA acts mainly as signal molecule as plant 
response against this abiotic stress and SOD activity 
could be a biological indicator if studied in line with the 
performed by Avila et al. (2017) with Ethrel®48 treatment 
to increase pineapple flowering.  

It is known that temperature increased (in this case 
from 23 to 29°C) during the transition. The influence of 
temperature on the production of plants can be direct, on 
the growth of the plant altering its physiology, or indirectly 
by varying the humidity, the quantities of minerals 
absorbed by the plant and its transport. Whatever the 
influence of the thermal increase is in this transit, the 
results of the application of Biojas® favoured the 
relationships of the metabolic processes, perhaps as 
demonstrated by Cejas et al. (2012) in other thermal 
management required to improve productivity in new 
climatic scenarios. It would then be a tool to apply in 
predictive studies (Lobell and Asseng, 2017). Pineapple 
plantlets treated with JA showed higher protein 
biosynthesis, which can be associated with a better 
regulated metabolic predisposition to face this phase, 
when superoxide dismutase activity showed adequate 
control against this stress related to superior water-use 
efficiency and survival.   

Thus, based on these results, this study could show the 
molecular, hormonal, and histological changes that are 
present right after Biojas® application, providing new 
insights into how pineapple acclimatization occurs under 
natural conditions. 
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